С одной стороны, работу тока можно легко посчитать, зная силу тока, напряжение и сопротивление нагрузки. До боли знакомые формулы из курса школьной физики выглядят так.
Рис. 1. Формулы
И здесь нет ни слова про реактивную составляющую.
С другой стороны, ряд физических процессов на самом деле накладывают свои особенности на эти расчёты. Речь идёт о реактивной энергии. Проблемы с пониманием реактивных процессов приходят вместе со счетами за электроэнергию в крупных предприятиях, ведь в бытовых сетях мы платим только за активную энергию (размеры потребления реактивной энергии настолько малы, что ими просто пренебрегают).
Определения
Чтобы понять суть физических процессов начнём с определений.
Активная электроэнергия – это полностью преобразуемая энергия, поступающая в цепь от источника питания. Преобразование может происходить в тепло или в другой вид энергии, но суть остаётся одна – принятая энергия не возвращается обратно в источник.
Пример работы активной энергии: ток, проходя через элемент сопротивления, часть энергии преобразует в нагрев. Эта совершённая работа тока и является активной.
Реактивная электроэнергия – это энергия, возвращаемая обратно источнику тока. То есть ранее полученный и учтённый счётчиком ток, не совершив работы, возвращается. Помимо прочего ток совершает скачок (на короткое время нагрузка сильно возрастает).
Тут без примеров сложно понять процесс.
Самый наглядный – работа конденсатора. Сам по себе конденсатор не преобразует электроэнергию в полезную работу, он её накапливает и отдаёт. Конечно, если часть энергии всё-таки уходит на нагрев элемента, то её можно считать активной. Реактивная же выглядит так:
1.При питании ёмкости переменным напряжением, вместе с увеличением U растёт и заряд конденсатора.
2.В момент начала падения напряжения (второй четвертьпериод на синусоиде) напряжение на конденсаторе оказывается выше, чем у источника. И поэтому конденсатор начинает разряжаться, отдавая энергию обратно в цепь питания (ток течёт в обратном направлении).
3.В следующих двух четвертьпериодах ситуация полностью повторяется, то только напряжение меняется на противоположное.
Ввиду того, что сам конденсатор работы не совершает, принимаемое напряжение достигает своего максимального амплитудного значения (то есть в √2=1,414 раза больше действующего 220В, или 220·1,414=311В).
При работе с индуктивными элементами (катушки, трансформаторы, электродвигатели и т.п.) ситуация аналогична. График показателей можно увидеть на изображении ниже.
Рис. 2. Графики показателей
Ввиду того, что современные бытовые приборы состоят из множества разных элементов с "реактивным" эффектом питания и без него, то реактивный ток, протекая в обратном направлении, совершает вполне реальную работу по нагреву активных элементов. Таким образом, реактивная мощность цепи – по сути выражается в побочных потерях и скачках напряжения.
Очень сложно отделить один показатель мощности от другого при расчётах. А система качественного и эффективного учёта стоит дорого, что, собственно, и привело к отказу от измерения объёма потребления реактивных токов в быту.
В крупных коммерческих объектах наоборот, объем потребления реактивной энергии намного больше (из-за обилия силовой техники, снабжаемой мощными электродвигателями, трансформаторами и другими элементами, порождающими реактивный ток), поэтому для них вводится раздельный учёт.
Как считается активная и реактивная электроэнергия
Большинство производителей счётчиков электроэнергии для предприятий реализуют простой алгоритм.
Q=(S2 - P2)1/2
Здесь из полной мощности S отнимается активная мощность P (в облегчённом для понимания виде).
Таким образом, производителю не обязательно организовывать полностью раздельный учёт.
Что такое cosϕ (косинус фи)
Ввиду того, что большой объем фактически паразитных реактивных токов нагружает сети поставщика электроэнергии, последние стимулируют потребителей снижать реактивную мощность.
Для числового выражения соотношения активной и реактивной мощностей применяется специальный коэффициент – косинус фи.
Вычисляется он по формуле.
cosϕ = Pакт/Pполн
Где полная мощность – это сумма активной и реактивной.
Чем ближе показатель к единице, тем меньше паразитной нагрузки на сеть.
Такой же коэффициент указывается на шильдиках электроинструмента, оснащённого двигателями. В этом случае cosϕ используется для оценки пиковой потребляемой мощности. Например, номинальная мощность прибора составляет 600 Вт, а cosϕ = 0,7 (средний показатель для подавляющего большинства электроинструмента), тогда пиковая мощность, необходимая для старта электродвигателя будет считаться как Pномин / cosϕ, = 600 Вт / 0,7 = 857 ВА (реактивная мощность выражается в вольт-амперах).
Применение компенсаторов реактивной мощности
Чтобы стимулировать потребителей эксплуатировать электросеть без реактивной нагрузки, поставщики электроэнергии вводят дополнительный оплачиваемый тариф на реактивную мощность, но оплату взимают только если среднемесячное потребление превысит определённый коэффициент, например, при соотношении полной и активной мощностей составит свыше 0,9, счёт на оплату реактивной мощности не выставляется.
Для того, чтобы снизить расходы, предприятия ставят специальное оборудование – компенсаторы. Они могут быть двух видов (в соответствии с принципом работы):
Автор: RadioRadar